Što je Razdoblje funkcije y = 3sen (4x)?



razdoblje funkcije y = 3sen (4x) je 2π / 4 = π / 2. Da bismo jasno razumjeli razlog ove tvrdnje, moramo znati definiciju razdoblja funkcije i razdoblje funkcije sin (x); malo o grafovima funkcija također će biti korisno.

Trigonometrijske funkcije, kao što su sinus i kosinus (sin (x) i cos (x)), vrlo su korisne u matematici i inženjerstvu.

Riječ period se odnosi na ponavljanje događaja, tako da se kaže da je funkcija periodična jednaka riječi "njezin graf je ponavljanje dijela krivulje". Kao što je prikazano na prethodnoj slici, funkcija sin (x) je periodična.

Periodične funkcije

Za funkciju f (x) se kaže da je periodična ako postoji realna vrijednost p such 0 takva da je f (x + p) = f (x) za sve x u domeni funkcije. U tom slučaju, vrijeme funkcije je str.

Obično se naziva razdoblje funkcije s najmanjim pozitivnim realnim brojem p koje zadovoljava definiciju.

Kao što je prikazano na prethodnom grafikonu, funkcija sin (x) je periodična i njezino razdoblje je 2π (kosinusna funkcija je također periodična, s razdobljem jednako 2π).

Promjene u grafu funkcije

Neka je f (x) funkcija čiji je graf poznat i neka je c pozitivna konstanta. Što se događa s grafom f (x) ako pomnožimo f (x) s c? Drugim riječima, kako je grafikon c * f (x) i f (cx)?

Grafikon c * f (x)

Kada se funkcija pomnoži s vanjske strane s pozitivnom konstantom, graf f (x) prolazi kroz promjenu izlaznih vrijednosti; to jest, promjena je okomita i možete imati dva slučaja:

- Ako je c> 1, tada se graf prolazi kroz vertikalno rastezanje s faktorom od c.

- Da 0

Grafikon f (cx)

Kada se argument funkcije množi konstantom, graf f (x) prolazi kroz promjenu ulaznih vrijednosti; to jest, promjena je horizontalna i, kao i prije, možete imati dva slučaja:

- Ako je c> 1, graf se podvrgava horizontalnoj kompresiji s faktorom 1 / c.

- Da 0

Razdoblje funkcije y = 3sen (4x)

Valja napomenuti da u funkciji f (x) = 3sen (4x) postoje dvije konstante koje mijenjaju graf sinusne funkcije: jedna vanjska množenja i druga interno.

3 koji je izvan sinusne funkcije ono što radi je da produži funkciju vertikalno za faktor 3. To znači da će funkcija graf 3sen (x) biti između vrijednosti -3 i 3.

4 koji je unutar sinusne funkcije uzrokuje da graf funkcije pretrpi horizontalnu kompresiju za faktor 1/4.

S druge strane, razdoblje funkcije mjeri se vodoravno. Budući da je razdoblje funkcije sin (x) 2π, s obzirom na grijeh (4x) veličina razdoblja će se promijeniti.

Da bismo znali koje je razdoblje y = 3sen (4x), jednostavno pomnožimo razdoblje funkcije sin (x) s 1/4 (faktor kompresije).

Drugim riječima, razdoblje funkcije y = 3sen (4x) je 2π / 4 = π / 2, kao što se može vidjeti na posljednjem grafu.

reference

  1. Fleming, W. i Varberg, D.E. (1989). Precalculus Mathematics. Prentice Hall PTR.
  2. Fleming, W. i Varberg, D.E. (1989). Precalculus matematika: pristup rješavanju problema (2, Ilustrirani ed.). Michigan: Prentice Hall.
  3. Larson, R. (2010). Viša aritmetika (8 izd.). Cengage učenje.
  4. Pérez, C.D. (2006). Viša aritmetika. Obrazovanje Pearson.
  5. Purcell, E.J., Varberg, D., & Rigdon, S.E. (2007). računanje (Deveto izdanje). Prentice Hall.
  6. Saenz, J. (2005). Diferencijalni račun s ranim transcendentalnim funkcijama za znanost i inženjerstvo (Drugo izdanje izd.). hipotenuza.
  7. Sullivan, M. (1997). Viša aritmetika. Obrazovanje Pearson.